Solution Sheet 6

1. (i) For a cycle of length 2 we have (a,b) = (b,a) we need only count the number of (unordered) subsets of $\{1, 2, 3, 4, 5\}$ of size 2. There are $\binom{5}{2} = 10$ of these.

(ii) For a 3-cycle we have (a, b, c) = (b, c, a) = (c, a, b). So we need count the number of *ordered* 3-tuples, of which there are $5 \times 4 \times 3$ choices, but then divide this by 3. So there are 20 3-cycles.

(iii) If the permutations fix 5 say, we are counting the number of elements that permute $\{1, 2, 3, 4\}$, which is the same as the cardinality of S_4 , i.e. 4! = 24.

Only the set of permutations that fix a given element is closed under composition.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 8 & 5 & 10 & 11 & 7 & 4 & 9 & 1 & 2 & 3 & 6 \end{pmatrix}$$

= (1,8) \circ (2,5,7,9) \circ (3,10) \circ (4,11,6) .

So the order is lcm(2, 4, 2, 3) = 12.

(ii)

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 2 & 4 & 6 & 8 & 10 & 5 & 7 & 9 & 11 & 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 3 & 6 & 9 & 1 & 4 & 7 & 10 & 2 & 5 & 8 & 11 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 6 & 5 & 11 & 2 & 8 & 7 & 1 & 4 & 10 & 9 & 3 \end{pmatrix}$$
$$= (1, 6, 7) \circ (2, 5, 8, 4) \circ (3, 11) \circ (9, 10) .$$

So the order is lcm(3, 4, 2, 2) = 12.

- 3. \bigstar Be careful, the cycles in these compositions are not disjoint. You should first write them out as compositions of disjoint cycles.
 - (i) $(1, 2, 3) \circ (1, 3, 4) \circ (1, 3, 5) = (1, 4, 2, 3, 5)$ which has order 5,
 - (ii) $(1,2) \circ (1,3) \circ (1,4) \circ (1,5) = (1,5,4,3,2)$ which has order 5,
 - (iii) $(2,3,5) \circ (1,2) \circ (2,4) \circ (1,2) = (1,4) \circ (2,3,5)$ which has order 6.

4. a)

$$\begin{split} \sigma_1 &= (1,2,4) \circ (3,5) \,, \\ \sigma_2 &= (2,4,6,5) \,, \\ \sigma_3 &= (1,6,5,4) \circ (2,3) \,, \\ \tau_1 &= (1,7,2) \circ (3,9) \circ (4,8,5,6) \,, \\ \tau_2 &= (2,7) \circ (3,5,8) \circ (4,9,6) \,. \end{split}$$

b) The order of σ_1 is lcm (3, 2) = 6, of σ_2 is 4, of σ_3 is lcm (4, 2) = 4, of τ_1 is lcm (3, 2, 4) = 12 and of τ_2 is lcm (2, 3, 3) = 6.

5. You want to find cycles of length $a, b, c, ... \ge 2$ with a + b + c + ... = 13and the largest possible lowest common multiple lcm (a, b, c, ...).

A search will give a = 7, b = 6, when the maximal order will be 42. Such a permutation would be

$$(1, 2, 3, 4, 5, 6, 7) \circ (8, 9, 10, 11, 12, 13)$$
.

6. No. It is not well defined on \mathbb{Q} . For instance,

$$\frac{1}{2} * \frac{1}{1} = \frac{2}{3}.$$

But in \mathbb{Q} we have $\frac{1}{2} = \frac{2}{4}$ yet

$$\frac{2}{4} * \frac{1}{1} = \frac{3}{5} \neq \frac{2}{3}.$$

7. (i) No. 1 + 1 = 2 which is not odd.

(ii) Yes. If a and b are even integers then a = 2k and $b = 2\ell$ for some integers k, ℓ . But then $ab = (2k)(2\ell) = 2(2k\ell)$ is even.

(iii) Yes. If a and b are odd integers then a = 2k + 1 and $b = 2\ell + 1$ for some integers k, ℓ . Thus

$$a \circ b = a + b - ab$$

= 2k + 1 + 2l + 1 - (2k + 1) (2l + 1)
= 2 (-2kl) + 1

which is odd.

8. (i) Is commutative. Proof: addition on \mathbb{R} is commutative,

Is not associative. Counterexample: 1 * (2 * 3) = 1 * 10 = 22 while (1 * 2) * 3 = 18.

(ii) Is not commutative. Counterexample: 1*-1 = 1 while -1*1 = -1.

Is associative. Proof: a * (b * c) = a * (b |c|) = a |b||c|| = a |b||c| and (a * b) * c = (a |b|) * c = a |b||c|.

(iii) Is commutative. Proof: both addition and multiplication are commutative on \mathbb{R} .

Is not associative. Counterexample:

$$1 * (2 * 3) = \frac{1 + (2 * 3)}{1 \times (2 * 3)} = \frac{1 + \frac{2+3}{2 \times 3}}{\frac{2+3}{2 \times 3}} = \frac{11}{5}.$$
$$(1 * 2) * 3 = \frac{(1 * 2) + 3}{(1 * 2) \times 3} = \frac{\frac{1+2}{2} + 3}{\frac{1+2}{2}} = \frac{9}{3}.$$

(iv) Is commutative Proof: addition and multiplication are commutative on \mathbb{Z} .

Is associative. Proof:

$$a * (b * c) = a * (b + c - bc)$$

= $a + (b + c - bc) - a (b + c - bc)$
= $a + b + c - bc - ab - ac + abc$
= $a + b - ab + c - ac - bc + abc$
= $(a + b - ab) + c - (a + b - ab) c$
= $(a * b) + c - (a * b) c$
= $(a * b) * c$.

(v) Is commutative, Proof: $x * y = \max(x, y) = \max(y, x) = y * x$. Is associative. Proof:

$$x * (y * z) = \max(x, y * z) = \max(x, \max(y, z))$$

= $\max(x, y, z) = \max(\max(x, y), z)$
= $\max(x * y, z) = (x * y) * z.$

9. (i) Yes. $\max(1, n) = \max(n, 1) = n$ for any $n \ge 1$ and so 1 is the identity.

(ii) No. If $e \in \mathbb{Z}$ is an identity, then we can choose an integer x < e and for this integer we find that $x * e = \max(x, e) = e \neq x$.

(iii) Yes. 0. We have seen that this x * y is commutative so we need only examine $x * 0 = x + 0 - x \times 0 = x$.

(iv) Yes.
$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

10. Many reasons. Perhaps because subtraction is not associative.

$$1 - (2 - 3) = 2$$
 but $(1 - 2) - 3 = -4$.

\times_{15}	1	4	7	13		×	×15	3	6	9	1
1	1	4	7	13			3	9	3	12	
4	4	1	13	7			6	3	6	9	1
7	7	13	4	1			9	12	9	6	
13	13	7	1	4]	12	6	12	3	
			×	$\langle A$	В	C	D				
			Ŀ	$A \mid A$	В	C	D	_			
			E	$B \mid B$	A	D	C				
			C	$C \mid C$	D	A	B				
			L	$D \mid D$	C	B	A				

where

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, C = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

and

$$D = \left(\begin{array}{cc} -1 & 0\\ 0 & -1 \end{array}\right).$$

(b) In $(\{1, 4, 7, 13\}, \times_{15})$, the identity is 1 and the inverses are $4^{-1} = 4$, $7^{-1} = 13$ and $13^{-1} = 7$.

In $(\{3, 6, 9, 12\}, \times_{15})$ the identity is 6 and the inverses are $9^{-1} = 9$, $3^{-1} = 12$ and $12^{-1} = 3$.

In the matrix group the identity is A and all matrices are self-inverse. 12. a)

\times_{28}	4	8	12	16	20	24
4	16	4	20	8	24	12
8	4	8	12	16	20	24
12	20	12	4	24	16	8
16	8	16	24	4	12	20
20	24	20	16	12	8	4
4 8 12 16 20 24	12	24	8	20	4	16

The identity element is 8.

 $4^{-1} = 16, 8^{-1} = 8, 12^{-1} = 24, 16^{-1} = 4, 20^{-1} = 20$ and $24^{-1} = 12$.

b) $(\{4, 8, 16\}, \times_{28})$ is a closed subset.

4	8	16
16	4	8
4	8	16
8	16	4
	4	4 8

 $(\{8,20\}\,,\times_{28})$ is a closed subset:

\times_{28}	8	20
8	8	20
20	20	8