Solution Sheet 6

1. (i) For a cycle of length 2 we have $(a, b)=(b, a)$ we need only count the number of (unordered) subsets of $\{1,2,3,4,5\}$ of size 2 . There are $\binom{5}{2}=10$ of these.
(ii) For a 3-cycle we have $(a, b, c)=(b, c, a)=(c, a, b)$. So we need count the number of ordered 3 -tuples, of which there are $5 \times 4 \times 3$ choices, but then divide this by 3 . So there are 203 -cycles.
(iii) If the permutations fix 5 say, we are counting the number of elements that permute $\{1,2,3,4\}$, which is the same as the cardinality of S_{4}, i.e. $4!=24$.

Only the set of permutations that fix a given element is closed under composition.
2. (i)

$$
\begin{gathered}
\left(\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
8 & 5 & 10 & 11 & 7 & 4 & 9 & 1 & 2 & 3 & 6
\end{array}\right) \\
=(1,8) \circ(2,5,7,9) \circ(3,10) \circ(4,11,6) .
\end{gathered}
$$

So the order is $\operatorname{lcm}(2,4,2,3)=12$.
(ii)

$$
\begin{aligned}
& \left(\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
2 & 4 & 6 & 8 & 10 & 5 & 7 & 9 & 11 & 1 & 3
\end{array}\right) \\
= & \left(\begin{array}{cccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
6 & 5 & 11 & 2 & 8 & 7 & 1 & 4 & 10 & 9 & 3
\end{array}\right) \\
= & (1,6,7) \circ(2,5,8,4) \circ(3,11) \circ(9,10) .
\end{aligned}
$$

So the order is $\mathrm{lcm}(3,4,2,2)=12$.
3. \star Be careful, the cycles in these compositions are not disjoint. You should first write them out as compositions of disjoint cycles.
(i) $(1,2,3) \circ(1,3,4) \circ(1,3,5)=(1,4,2,3,5)$ which has order 5 ,
(ii) $(1,2) \circ(1,3) \circ(1,4) \circ(1,5)=(1,5,4,3,2)$ which has order 5 ,
(iii) $(2,3,5) \circ(1,2) \circ(2,4) \circ(1,2)=(1,4) \circ(2,3,5)$ which has order 6 .
4. a)

$$
\begin{aligned}
\sigma_{1} & =(1,2,4) \circ(3,5), \\
\sigma_{2} & =(2,4,6,5), \\
\sigma_{3} & =(1,6,5,4) \circ(2,3), \\
\tau_{1} & =(1,7,2) \circ(3,9) \circ(4,8,5,6), \\
\tau_{2} & =(2,7) \circ(3,5,8) \circ(4,9,6) .
\end{aligned}
$$

b) The order of σ_{1} is $\operatorname{lcm}(3,2)=6$, of σ_{2} is 4 , of σ_{3} is $\operatorname{lcm}(4,2)=4$, of τ_{1} is $\operatorname{lcm}(3,2,4)=12$ and of τ_{2} is $\operatorname{lcm}(2,3,3)=6$.
5. You want to find cycles of length $a, b, c, \ldots \geq 2$ with $a+b+c+\ldots=13$ and the largest possible lowest common multiple lcm (a, b, c, \ldots).

A search will give $a=7, b=6$, when the maximal order will be 42 . Such a permutation would be

$$
(1,2,3,4,5,6,7) \circ(8,9,10,11,12,13) .
$$

6. No. It is not well defined on \mathbb{Q}. For instance,

$$
\frac{1}{2} * \frac{1}{1}=\frac{2}{3}
$$

But in \mathbb{Q} we have $\frac{1}{2}=\frac{2}{4}$ yet

$$
\frac{2}{4} * \frac{1}{1}=\frac{3}{5} \neq \frac{2}{3} .
$$

7. (i) No. $1+1=2$ which is not odd.
(ii) Yes. If a and b are even integers then $a=2 k$ and $b=2 \ell$ for some integers k, ℓ. But then $a b=(2 k)(2 \ell)=2(2 k \ell)$ is even.
(iii) Yes. If a and b are odd integers then $a=2 k+1$ and $b=2 \ell+1$ for some integers k, ℓ. Thus

$$
\begin{aligned}
a \circ b & =a+b-a b \\
& =2 k+1+2 \ell+1-(2 k+1)(2 \ell+1) \\
& =2(-2 k \ell)+1
\end{aligned}
$$

which is odd.
8. (i) Is commutative. Proof: addition on \mathbb{R} is commutative,

Is not associative. Counterexample: $1 *(2 * 3)=1 * 10=22$ while $(1 * 2) * 3=18$.
(ii) Is not commutative. Counterexample: $1 *-1=1$ while $-1 * 1=-1$. Is associative. Proof: $a *(b * c)=a *(b|c|)=a|b| c| |=a|b||c|$ and $(a * b) * c=(a|b|) * c=a|b||c|$.
(iii) Is commutative. Proof: both addition and multiplication are commutative on \mathbb{R}.

Is not associative. Counterexample:

$$
\begin{aligned}
& 1 *(2 * 3)=\frac{1+(2 * 3)}{1 \times(2 * 3)}=\frac{1+\frac{2+3}{2 \times 3}}{\frac{2+3}{2 \times 3}}=\frac{11}{5} . \\
& (1 * 2) * 3=\frac{(1 * 2)+3}{(1 * 2) \times 3}=\frac{\frac{1+2}{2}+3}{\frac{1+2}{2}}=\frac{9}{3}
\end{aligned}
$$

(iv) Is commutative Proof: addition and multiplication are commutative on \mathbb{Z}.

Is associative. Proof:

$$
\begin{aligned}
a *(b * c) & =a *(b+c-b c) \\
& =a+(b+c-b c)-a(b+c-b c) \\
& =a+b+c-b c-a b-a c+a b c \\
& =a+b-a b+c-a c-b c+a b c \\
& =(a+b-a b)+c-(a+b-a b) c \\
& =(a * b)+c-(a * b) c \\
& =(a * b) * c .
\end{aligned}
$$

(v) Is commutative, Proof: $x * y=\max (x, y)=\max (y, x)=y * x$.

Is associative. Proof:

$$
\begin{aligned}
x *(y * z) & =\max (x, y * z)=\max (x, \max (y, z)) \\
& =\max (x, y, z)=\max (\max (x, y), z) \\
& =\max (x * y, z)=(x * y) * z
\end{aligned}
$$

9. (i) Yes. $\max (1, n)=\max (n, 1)=n$ for any $n \geq 1$ and so 1 is the identity.
(ii) No. If $e \in \mathbb{Z}$ is an identity, then we can choose an integer $x<e$ and for this integer we find that $x * e=\max (x, e)=e \neq x$.
(iii) Yes. 0 . We have seen that this $x * y$ is commutative so we need only examine $x * 0=x+0-x \times 0=x$.
(iv) Yes. $\left(\begin{array}{ll}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$
10. Many reasons. Perhaps because subtraction is not associative.

$$
1-(2-3)=2 \quad \text { but } \quad(1-2)-3=-4
$$

11. a)

$\times 15$	1	4	7	13	$\times 15$	3	6	9	12
1	1	4	7	13	3	9	3	12	6
4	4	1	13	7	6	3	6	9	12
7	7	13	4	1	9	12	9	6	3
13	13	7	1	4	12	6	12	3	9

\times	A	B	C	D
A	A	B	C	D
B	B	A	D	C
C	C	D	A	B
D	D	C	B	A

where

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), B=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), C=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

and

$$
D=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) .
$$

(b) In $\left(\{1,4,7,13\}, \times_{15}\right)$, the identity is 1 and the inverses are $4^{-1}=4$, $7^{-1}=13$ and $13^{-1}=7$.

In $\left(\{3,6,9,12\}, \times_{15}\right)$ the identity is 6 and the inverses are $9^{-1}=9$, $3^{-1}=12$ and $12^{-1}=3$.

In the matrix group the identity is A and all matrices are self-inverse.
12. a)

\times_{28}	4	8	12	16	20	24
4	16	4	20	8	24	12
8	4	8	12	16	20	24
12	20	12	4	24	16	8
16	8	16	24	4	12	20
20	24	20	16	12	8	4
24	12	24	8	20	4	16

The identity element is 8 .
$4^{-1}=16,8^{-1}=8,12^{-1}=24,16^{-1}=4,20^{-1}=20$ and $24^{-1}=12$.
b) $\left(\{4,8,16\}, \times_{28}\right)$ is a closed subset.

\times_{28}	4	8	16
4	16	4	8
8	4	8	16
16	8	16	4

$\left(\{8,20\}, \times_{28}\right)$ is a closed subset:

\times_{28}	8	20
8	8	20
20	20	8

